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Abstract

In this paper, we make a bridge between two theories in social psychology, namely social judg-

ment theory and balance theory, exploiting nonlinear models. In particular, we propose a model

of opinion dynamics which takes into account the notions of latitude of acceptance, latitude of

noncommitment, and latitude of rejection from social judgment theory. In the proposed model,

each individuals is considered as a node in a graph, and the influences are represented by edges.

The proposed model considers positive (negative) edges for acceptance (rejection), while there is

no connection for noncommitment. In addition, in the introduced nonlinear model, the weight of

each edge, which represents the influence weight, changes depending on the opinions of the indi-

viduals in the network. Given the negative interactions, the influence graph of the network may

be initially unbalanced; however, the proposed model presents that such graph seeks balance

eventually. Thus, the model introduced in this paper provides a mathematical framework for

balance theory introduced by Harary. Through simulations, we show that the proposed model

can demonstrate consensus, bipartite consensus, and clustering of opinions.

Keywords: Opinion Dynamics, Bounded Confidence Model, Social Judgment Theory, Balance

Theory

1. Introduction

In 20th century, a quantitative approach called sociometry was introduced to describe social

relations [1]. For instance, [2] employed graphical tools to demonstrate the structure of a group.

Since then, sociometry enabled the researchers to develop the interdisciplinary science of social
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network analysis [1, 3]. Analysis and as a result understanding of how individuals in a social

network influence each other can be important from different perspectives such as financial [4],

political [5], criminal [6, 7, 8], and epidemiological [9]. Partly due to this broad applicative

appeal, throughout the past decades, researchers in different fields have tried to comprehend the

complex process of opinion dynamics in social networks.

The problems that the field of opinion dynamics address and the assumptions that models

in this area use derive from the social sciences. At their roots, it is possible to identify the

influence of sociological analyses on crowd behavior by [10] and [11], social psychological analyses

on majority influence and conformity by [12] and [13], on minority influence and innovation by

[14] and economics investigations into ‘herd behavior’ by [15]. The basic tenet of all this classic

research in the social sciences is that individuals’ opinions reflect the opinion of their social

group.

Follow up research started to differentiate between distinct agents of social influence. For

example, the two-step flow of communication model introduced by [16] and elaborated by [17]

hypothesized that opinions flow from mass media to opinion leaders, and from opinion leaders to

the wider community. Social power model in [18] focused on the impact that a supervisor has on

their subordinates. In social impact theory of [19], the impact of any information source on the

individual reflected the number of others who make up that source, their immediacy, and their

salience or power. These seminal ideas contributed to the contemporary view that the process

of opinion spreading begins from a random distribution of attitudes and beliefs within the social

network. Any individual is more likely to be influenced by someone nearby (e.g., a neighbor)

than by those far away; and localized cultures of beliefs may be a result of such influences.

Considerations about dynamic and systemic changes of opinions within networks also pro-

gressively developed [20]. Early research on consensus building in decision science [21, 22],

models of voters behaviors [23, 24] and culture dissemination [25] in economics and politics,

embedded the view that the distribution of positions or opinions within a population would

evolve dynamically over time through local interpersonal influences. More formally, in social

influence network theory of [26], an opinion norm or culture of beliefs is conceived to form as a

weighted average of individuals’ private opinions on some issue. These forming norms in turn

dynamically influence (or change) the individuals’ initial opinions, e.g., as an average between

the norm and their initial opinions.
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The process whereby individuals influence each other’s opinions is a result of complex physio-

logical, psychological, and social psychological processes which are not fully understood yet [27].

Simplified models of this complexity are therefore fruitful to help identify the ‘basics’ of opinion

dynamics; check, e.g., [1, 28, 29] for informative review papers on opinion dynamic models. In

such a setup, the spreading and evolution of opinions are mathematically modeled and investi-

gated, see, e.g., [30, 31]. These can take, for example, the form of statistical-mechanics models,

e.g., [32, 33], as well as more recently of agent-based computational models, e.g., [34, 35]. In voter

models, the tools from statistical and condensed-matter physics have been used to investigate

how the rules of local influences between neighboring agents affect the macroscopic properties

of the global voting system [20]. In Sznajd models, these tools have been used to investigate

the implications of greater influence of two or more people who share the same opinion than a

single person with that opinion. In culture dissemination models of [25], these tools are used

to investigate the implications of similar individuals being more likely to influence each other

than dissimilar individuals, and the mutual influence further increasing the similarity between

individuals. In these models, agents adjust their opinions toward the average of the agent group.

As noted by [20], bounded confidence models (BCMs) have been fruitfully studied, see, e.g., the

application of [36] to the study of the propagation of extremism, and analysis of [37] about

propaganda effects.

These (continuous) opinion dynamics models have attracted increasing attention over and

beyond earlier discrete (e.g., binary) opinion dynamics models. A key principle in these models

is that an agent would not influence another agent if the difference in opinions between the

two agents is larger than a given threshold or ‘bound of confidence’. Different BCMs, however,

differ in the averaging mechanisms used to represent agents’ opinion updating. The bounded

confidence model always converges to a fixed point in finite number of steps [28]. This fact was

pointed out through a theorem in [38]. Some discussions have been reported in the literature on

the convergence rate of the BCM, see, e.g., [39, 40, 41]. In addition, a multidimensional BCM

was proposed in [42].

The concept used in BCM resembles the social psychological notion of attitude’s ‘latitude

of acceptance’, of early social judgment theory [43, 44, 45, 46] whereby an agent’s opinion can

change another individual’s opinion only if it falls within their attitude’s latitude of acceptance.

According to social judgment theory, an individual’s attitude is comprised of three zones [43, 47],
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namely, latitude of acceptance, rejection, and noncommitment.

• Latitude of acceptance is made up of the opinions an individual finds acceptable.

• Latitude of rejection contains the opinions an individual finds objectionable.

• Latitude of noncommitment consists of the opinion an individual is not committed to.

An individual compares new opinions with his/her present opinion and decides where to put

them on the attitude scale in the individual’s mind. In other words, an individual goes through

a “subconscious sorting out of” opinions and weighs every new opinion [47].

As mentioned earlier the original BCM can be considered as an incorporation of notion of

latitude of acceptance from social judgment theory. In this paper, we aim to further extend

this model by incorporating notions of attitude’s ‘latitude of rejection’ (and latitude of non-

commitment) from social judgment theory and social involvement theory [43]; [48], see also

[49]. In fact, in our model, the opinion of individual j is accepted by individual i if it lies in

the latitude of acceptance of individual i. In addition, if the opinion of individual j falls in the

latitude of rejection of individual i, then it is assumed that it is rejected with a negative influence

weight. Finally, if an individual’s opinion is in the latitude of noncommitment of individual i, it

is ignored and no weight is assigned for that individual’s opinion. Our simulations demonstrate

that although the presence of rejection may result in initially unbalanced networks, the proposed

model leads to a structurally balanced network which is consistent with the work of Harary. In

addition, for the proposed confidence bounded model, we demonstrate via simulations that under

certain conditions individuals can reach consensus or bipartite consensus. Clustering of opinions

is also noted in the simulation results. These behaviors are defined as follows.

• Consensus refers to the phenomenon where all individuals agree on an issue, and the

difference between their opinions converges to zero.

• Bipartite consensus occurs when individuals form two connected groups within a commu-

nity. The interactions among individuals in each group are positive, while the interaction

between the two groups is negative. In this case, the opinions of individuals present in one

group converge to the exactly opposite value of the other group. That is, if the individuals

in the first group agree on the value +1, the individuals in the second group will agree on

the value -1.
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• Clustering of opinions occur when individuals form two or more disjoint groups with dis-

tinct opinions.

It should be noted that incorporating the notion of latitude of rejection using a negative

influence weight results in a signed influence network. That is, both positive and negative

influences are present in our setting. Only a few works related to BCM contemplate negative

interactions. This relative neglect maps onto a similar positivity bias in social network analysis

research using human participants’ data [50, 51]. In order to accommodate the influence of

negative or unfriendly interactions in a social network, researchers suggested using signed graphs,

see, e.g., [52, 53].

One of the few papers on this topic was the work reported in [49]. The authors employ two

threshold values to consider social judgment theory. Although this might seem similar to our

current work, the model that we are proposing for updating the opinions is different. In [49],

the individuals are chosen randomly at each time step, and the distance between their opinions

are calculated, while in our model the distance is calculated for all individuals. In addition,

structural balance property is not discussed in [49]. Their simulations show that consensus,

polarization, or clustering can occur among the individuals.

In [54], a 2D BCM with a rejection mechanism was considered. The authors consider N

agents each with a 2D attitude as x1 and x2 represented by real numbers between −1 and +1.

They also assume uncertainties for each opinion, but then assume that they are all equal and

denote it by U . It is noted that uncertainty might represent confidence in one’s own attitude

position. The interacting individuals are chosen randomly at time step t. In [54], authors discuss

different scenarios for rejection of the opinions based on different cases that arise using x1 and

x2 of individuals. However, social judgment theory and balance theory are not discussed in this

work.

The rest of this paper is organized as follows. In Section 2, we provide the preliminary

information on bounded confidence models and discuss structural balance theory as a basis

to introduce negative interactions. Then, we propose our modified bounded confidence model

in Section 3. The model is simulated in Section 4 via some numerical experiments. Further

discussions about the simulation results are given in Section 5. Finally, Section 6 concludes the

paper.

5



2. Preliminaries

In this section, the original BCM that only adopts positive interactions is introduced. After-

wards, we explain the notion of structural balance, which is an important property of networks

with negative interactions. We also briefly review some related works.

2.1. Bounded Confidence Model

Let xi(t) ∈ R denote the opinion of individual i. Note that individuals’ opinions are assumed

to be scalars. That is, each individual is assigned with only one opinion, and they discuss a

single issue in the network. In BCM, the opinion of individual i is influenced by the opinion of

individual j if their opinions differ not more than a specific confidence level denoted by εi. Let

I(i, x(t)) be the set of individuals having the similar opinions with individual i, i.e.

I(i, x(t)) = {1 ≤ j ≤ n : |xi(t)− xj(t)| ≤ εi}, (1)

where | · | is the absolute value.

Remark 1. It should be noted that, (1) determines the structure of the influence matrix and

the influence graph for the group under study.

Then the model is given by [55] as

xi(t + 1) = |I(i, x(t))|−1
∑

j∈I(i,x(t))

xj(t), (2)

where | · | represents the cardinality of the set.

This model suggests that individuals update their opinion with the average opinion of those

individuals they trust. Note that (2) can be written in the form of

x(t + 1) = W (t)x(t), (3)

where x(t) is a stack vector of the opinions of the individuals, i.e. x(t) =
[
x1(t), . . . , xn(t)

]>
,

and W (t) is the influence matrix, elements of which are defined as follows

wij(t) =


1

|I(i,x(t))| j ∈ I(i, x(t))

0 j /∈ I(i, x(t))

. (4)

Note that this model relies only on nonnegative links. That is, all wij are either positive or zero.

Moreover, note that W (t) evolves as the opinions of the individuals evolve.
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According to the model in (2) with I(i, x(t)) defined in (1), the opinion of individual i is

influenced by the opinions of agents j if their opinions differ not more than a specific confidence

level denoted by εi. Similarly, in classic social judgment theory [43, 48] an individual’s opinion

was expected to change or be subjected to another individual’s persuasive message only when this

fell within their ‘latitude of acceptance’, i.e., range of acceptable opinions around the individual’s

own opinion or anchor point.

For this model, one can consider a uniform level of confidence, i.e. εi = ε. In addition to the

symmetric case in (1), the asymmetric case where

I(i, x(t)) = {1 ≤ j ≤ n : −εl ≤ xi − xj ≤ εr}

is also investigated in [55], and it is shown that this model can reach consensus under certain

conditions. It may also demonstrate a clustering of opinions [55].

2.2. Structural Balance

A key feature of BCM is that the influence graph coevolves with the opinions. These changing

behaviors can be reflected in the structure of the social network and its associated influence

graph. Hence, if negative interactions are also considered in BCM, the time-varying behavior

of the influence graph becomes even more important due to the fact that estrangements may

occur or new friendships may be formed.

As humans tend “to preserve a cognitive consistency of hostility and friendship” [56], the

social networks seek a balance. The social psychological concept of balance theory was intro-

duced in 1946 by Heider [57]. Heider’s theory involved triads, and it was stated that a triad is

unbalanced if 1 or 3 negative links exist. In addition, a triad is balanced if it contains 0 or 2

negative links. In fact, the principle of this theory was simple [56]. It can be interpreted as “my

friend’s friend is my friend, my friend’s enemy is my enemy, my enemy’s friend is my enemy,

my enemy’s enemy is my friend” [57, 56]. In order to further clarify this theory, we borrow an

example from [58]. Assume that you are friends with a married couple who have decided to get

a divorce. It might be a hard situation for you to choose who you should remain friend with.

Heider’s work on balance theory was extended and generalized using graphs by Cartwright

and Harary [59]. In fact, they used edges with positive signs to represent friendly interactions,

while a negative edge was used to demonstrate a hostile interaction. According to [59], if all

triangles in a complete graph have an odd number of positive edges, then the graph is structurally
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balanced [60]. It was also shown in [59] that in balanced complete graphs only two cases are

possible. That is, the individuals form a ‘utopia’ where all individuals are mutual friends, or

they form a ‘bipolar’ society with two mutually antagonistic groups which have friendly relations

internally [58]. For a general network, not necessarily complete or even connected, a general

concept of structurally balanced is adopted in this paper, that is, a signed graph is structurally

balanced if and only if all its cycles are positive, i.e. the product of edge signs in all cycles is

positive, see, e.g., [52].

The theory of structural balance takes into account only the stable state of the network;

therefore it is referred to as a static theory [60]. However, as social networks are dynamic

and the relations can change, researchers have proposed models that can take into account the

dynamic property [56, 58, 60]. That is, they consider models that can start with an unbalanced

structure but lead to a balanced structure [60].

It will be discussed later that the proposed model in this paper incorporates latitude of

rejection into the bounded confidence model. As a result, negative interactions arise, and the

model may become unbalanced. However, it is shown via simulations that, our model always

reaches a structurally balanced state.

3. Modified Bounded Confidence Model

As explained earlier, the neighbor selection method in (1) only considers positive influences.

That is, the individuals can influence each other’s opinions positively if their opinions are close

to each other. However, in a social network, individuals might choose to reject some opinions.

That is, they tend to disagree with what other individuals tell them. Based on social judgment

theory, this occurs when others’ opinions fall in the individual’s latitude of rejection away from

their anchor position, thus generating a repulsive effect, see, e.g., [12, 49]. As a result, in the

sequel, we propose a neighbor selection method which also captures the disagreement that may

be present in a social network.

First, we propose the following modification to choose the influencing neighbors in (1).

This method allows individuals to take into account interaction with individuals they disagree

with. Let Ip(i, x(t)) denote the set of trustworthy neighbors (positive interaction) and Ih(i, x(t))

represent the set of neighbors with whom individual i has negative interactions. Then, we write
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Ip(i, x(t)) ={1 ≤ j ≤ n : |xi(t)− xj(t)| ≤ εp},

Ih(i, x(t)) ={1 ≤ j ≤ n : |xi(t)− xj(t)| > εh}.
(5)

We assume that εp < εh. In other words, if an individual’s opinion is close to that of another

one’s by εp, then they have positive influence on each other’s opinion and tend to agree. However,

if the opinions of the individuals are farther than εh, then there is a negative interaction between

them. Furthermore, the individuals do not interact if the distance between their opinions are

between εp and εh.

Remark 2. The influence matrix and the graph associated with it change over time and coevolve

with the opinions of the individuals. Therefore, after further discussions in the network, it is

possible for some individuals to trust an individual whom they rejected initially. The opposite is

also possible.

Given the sets in (5), we propose the following modification to (2)

xi(t + 1) = |I(i, x(t))|−1

 ∑
j∈Ip(i,x(t))

xj(t) −
∑

k∈Ih(i,x(t))

xk(t)

 , (6)

where I(i, x(t)) = Ip(i, x(t)) ∪ Ih(i, x(t)) as defined in (5), and xi(t) denotes the opinion of

individual i. As mentioned earlier, the opinions of individuals are real valued scalars which can

be both positive and negative.

It is worth noting that the elements of the influence matrix W (t) can be written as

wij(t) =


1

|I(i,x(t))| j ∈ Ip(i, x(t))

−1
|I(i,x(t))| j ∈ Ih(i, x(t))

0 j /∈ I(i, x(t))

. (7)

Naturally, based on (5), we have i ∈ Ip(i, x(t)) for i = 1, · · · , n, and as a result, wii > 0. That

is, each individual puts a positive weight on her own opinion.

The sets in (5) can be considered as the incorporation of the notions of latitude of acceptance

and rejection from social judgment theory into the proposed model in this paper. That is, εp acts

as the threshold for the latitude of acceptance, whereas εh represents the threshold for latitude

of rejection. The interval between εp and εh indicates the notion of latitude of noncommitment.

In other words, the set Ip(i, x(t)) represents the set of individuals who fall into the latitude
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of acceptance of individual i, while Ih(i, x(t)) denotes the set of individuals who fall into the

latitude of rejection of individual i.

4. Numerical Experiments and Results

In this section, some numerical experiments are provided to further illustrate the proposed

model in this paper. It should be noted that the proposed model in this paper is highly nonlinear

and sophisticated which causes it to be hard to study analytically. However, for a small part of

current paper, namely Experiment 5, we have provided analytical results in [61]. Therefore, we

refer the readers to this paper for analytical results.

First, we present a numerical experiment to familiarize with the results of the original

bounded confidence model.

Experiment 1. Consider a network of 7 individuals updating their opinions according to (2).

For a confidence level of 0.4, i.e. ε = 0.4, the simulation results show that consensus occurs,

see Fig. 1a. It is clear from this figure that individuals have different opinions at the beginning.

However, as time goes on, their opinions tend towards each other, and after t = 4, all opinions

reach a consensus. This means that at this point all individuals agree on a certain value. How-

ever, for a confidence level of ε = 0.2, Fig. 1b demonstrates that individuals form clusters. That

is, individuals form two disjoint groups that do not interact with each other; however, inside

each group, individuals reach a consensus.

In the following experiment, we demonstrate the possible outcomes of our proposed model

via a simple example. In fact, consensus, bipartite consensus, and clustering of opinions are

shown in this example. It is worth noting that, in this example, only the results for a single run

of simulations are presented.

Experiment 2. Consider a network of 6 individuals with random initial opinions. Simulation

results for model in (6) are shown in Fig.2 through Fig.7. As mentioned earlier, we observe

three behaviors, namely consensus, bipartite consensus, and clustering. In Fig. 2, we can see

that the individuals in the network reach a consensus, and as a result, the distance between their

opinions converges to zero. In addition, it is observed that although the initial influence graph is

structurally unbalanced, the final influence graph is structurally balanced. Also, we can conclude

from Fig.4 that the individuals in the group reach a final opinion same in the value but different
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Figure 1: Evolution of opinions based on (2) for different confidence levels. The solid lines represent the opinions

of the individuals in the network. While (a) demonstrates a consensus among the individuals, (b) shows how a

low confidence can result in forming disjoint clusters.

in sign. It can be seen in Fig. 4b that for some individuals the distance between their opinions

remains above εh (rejection zone); hence, negative influence weights exist. This is also evident

from the graph in Fig. 5 where the individuals are divided into two groups. The influences

inside each group are positive (green), while the influences between the groups is negative (red).

Finally, in Fig. 6, we can observe two disjoint clusters due to the fact that for some individuals

the distance between their opinions remains between εp and εh (Non-commitment zone). The

final graph containing two disjoint clusters is shown in Fig. 7.

In the following experiment, we examine the impact of the network size on the convergence

rate. We define the convergence rate as follows.

t∗ = min
t
{t > 0 | xi(t) = xi(t + 1) ∀i = 1, . . . , n} (8)

That is, we consider the time step at which the opinions reach the final value for the first time.

Experiment 3. In this experiment, we consider different network sizes. In fact, we assume

that n is chosen from {5, 50, 100, 250, 500, 750, 1000}. In order to better understand the

effects of network size, we repeat the simulation for different pairs of (εp, εh), chosen from

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} such that εp < εh. For each pair, we run the simulation

for different network sizes for 100 times and save t∗. Then the mean value of t∗ over 100 runs

is calculated and denoted by t̄∗. The maximum, minimum, and mean values of t̄∗ for all possible
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Figure 2: (a) This figure demonstrates the evolution of opinions among individuals for εp = 0.5, εh = 0.7 using

(6). The solid lines represent the opinions of the individuals which converge to one common value. (b) While the

solid lines represent the distances between the opinions of the individuals, the dashed lines mark εp and εh, and

the acceptance, rejection, and non-commitment zones are defined accordingly. It is seen that all the distances

remain in the acceptance zone; therefore, all individuals agree with each other, and consensus is achieved.

pairs of (εp, εh) are shown in Fig. 8. It is shown that the convergence time does not significantly

increase with the size of network, resulting from two opposite influences. On the one hand, the

information may take more propagation time along a large network to reach consensus; on the

other hand, a large network implies denser connectives beneficial for convergence.

In the next numerical experiment, we examine the effects of the confidence levels on the

number of the clusters that can be formed. It is crucial to note that in our setup, clusters do not

influence each other. In other words, clusters are disjoint components of a graph. As a result,

this experiment does not consider bipartition of the opinions as two clusters since the graph

remains connected in this case. As a result, if the number of the clusters is 1, then consensus or

bipartite consensus might have happened. We also show the final opinions of the individuals.

Experiment 4. In this experiment, we first consider the number of clusters that are formed

with respect to different values of (εp, εh). Then we show the mean value of the final opinions in

each iteration with respect to (εp, εh). To this end, we create a vector of evenly linearly spaced 35

elements between 0 and 1 for εp and εh. Then, for a network with n = 250 and random initial

opinions between −1 and 1, we save the number of clusters formed over 100 iterations for each
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(a) Initial influence graph. (b) Final influence graph.

Figure 3: Initial and final graphs of (6) with εp = 0.5, εh = 0.7. Note that the influences are reciprocal with

different weights, but for presentation purposes the weights are ignored. In addition, while green color represents

positive influence, red is used for negative ones.

pair of (εp, εh). Fig. 9 demonstrates the average number of clusters over 100 runs. It can be

seen that for values of εp ≥ 0.64, the number of clusters is always 1. Fig.9 also shows that for

small values of εp and large values of εh the number of clusters increases.

The mean value of the final opinions with respect to εp and εh is presented in Fig. 10 from

different viewpoints. It is seen in Fig. 10b, that as εp increases, the individuals tend towards a

consensus value. Interestingly, as εh increases, the distance among the opinions increases.
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Figure 4: (a) This figure demonstrates the evolution of opinions among individuals for εp = 0.2, εh = 0.5 using

(6). The solid lines represent the opinions of the individuals which converge to two opinions same in value different

in sign. (b) While the solid lines represent the distances between the opinions of the individuals, the dashed lines

mark εp and εh, and the acceptance, rejection, and non-commitment zones are defined accordingly. Since for

some individuals the distances remain in the rejection zone, the influence graph will have negative influences.

(a) Initial influence graph. (b) Final influence graph.

Figure 5: Initial and the final graphs of (6) with εp = 0.2, εh = 0.5. Note that positive influences are shown in

green, whereas negative influences are shown in red. Although the initial graph is structurally unbalanced, the

final influence graph is divided into two groups, and it is structurally balanced. Individuals 1 and 2 form one

group, while individuals 3− 6 form the other group. The edges inside these groups are green (positive); however,

the links between the groups are red (negative).
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Figure 6: (a) This figure demonstrates the evolution of opinions among individuals for εp = 0.2, εh = 0.75 using

(6). The solid lines represent the opinions of the individuals which converge to two different values. (b) While

the solid lines represent the distances between the opinions of the individuals, the dashed lines mark εp and εh,

and the acceptance, rejection, and non-commitment zones are defined accordingly. Since for some individuals the

distances remain in the non-commitment zone, the influence graph will have disjoint clusters.

(a) Initial influence graph. (b) Final influence graph.

Figure 7: Initial and the final graphs of (6) with εp = 0.2, εh = 0.75. Although the final graph consists of two

disjoint clusters, it is considered as structurally balanced.
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Figure 8: The maximum, minimum, and mean value of t̄∗ in (8) for different network sizes.
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Figure 9: The average number of clusters for different pairs of (εp, εh) chosen from an evenly linearly spaced

interval between 0 and 1 such that εp < εh. Note that the simulations are run 100 times with randomly chosen

initial opinions, and then the average is calculated.
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(a) With respect to εp and εh

(b) With respect to εp

(c) With respect to εh

Figure 10: The mean value of the final values of the opinions after 100 runs. Different viewpoints have been

presented to show how each parameter effects the final value of the opinions.
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In the following, we show that our model leads to a structurally balanced influence graph.

In fact, this can be proved analytically, and it is stated in the theorem below.

Theorem 1. Suppose that lim
t→∞
|xi(t) − xj(t)| 6= εh or εp. The influence graph associated with

W (t) in (3) leads to a structurally balanced graph as t→∞.

Proof. We refer the readers to [61] for a complete proof.

To show this behavior of the proposed model, we compare the initial graph with the final

graph for different values of εp, εh and n. To be able to visualize the results, we define the

following index.

Bt(εp, εh) =


1 Influence graph is structurally balanced.

0 Influence graph is structurally unbalanced.

(9)

where t = 0, 1, . . ..

Experiment 5. In this experiment, we consider n ∈ {5, 25, 100, 250}. For each network size,

we consider different pairs of (εp, εh), and for each pair we calculate B0 and B∞. Next, for a

given value of (εp, εh) we repeat this procedure for 100 times each with initial opinions chosen

randomly between −1 and 1 and calculate the mean values of B0 and B∞, denoted by B̄0 and B̄∞,

respectively. The simulation experiments revealed that B̄∞ would always be one irrespective of

network size. As a result, Fig. 11 demonstrates B̄∞ for all n ∈ {5, 25, 100, 250}. Comparing the

results in Fig 12 and Fig. 11, we conclude that although the initial influence graph is structurally

unbalanced for some (εp, εh), the final influence graph is always structurally balanced. It is

interesting to note from Fig. 12 that as the number of individuals increases in a network, it

becomes harder for them to have a structurally balanced initial influence graph. However, Fig. 11

reveals that the model will render the influence graph structurally balanced eventually.
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Figure 11: The mean value of B∞ for 100 runs for all n ∈ {5, 25, 100, 250} and (εp, εh) chosen from an evenly

linearly spaced interval between 0 and 1 such that εp < εh.
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Figure 12: The mean value of B0 for different n and (εp, εh) chosen from an evenly linearly spaced interval between

0 and 1 such that εp < εh. .
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εp

εh
Very Large Large Small

Large Consensus Bipartite Consensus -

Small Clustering Clustering+Bipartite Consensus Bipartite Consensus

Table 1: Approximate behavior of the proposed model with respect to εp and εh.

5. Discussion

In this section, we provide some insight into the model and simulation results. Using the

results of [62], we can conclude that our model (6) is convergent. That is, the opinions of

individuals will not diverge as t→∞. In fact, it was shown via simulations that our model can

demonstrate behaviors such as consensus, bipartite consensus, and clustering. The behaviors

of the model are summarized in Table 1 at different latitudes of acceptance and rejection. An

important fact that should be noted is that the sets in (5) defining the sets of friendly and

unfriendly individuals in the social network are consistent with the social judgment theory.

In other words, the interval [0, εp] can be considered as the latitude of acceptance for each

individual, while the interval (εp, εh] represents the latitude of non-commitment for individuals.

Furthermore, (εp,∞) is considered as the latitude of rejection. As a result, if the opinion

differences of individuals lie in [0, εp], they will have mutual positive interactions. However, if

the opinion difference reaches (εp,∞), individuals will have negative interactions. Moreover,

individuals are not influenced by others’ opinions if their opinion difference remain in (εp, εh].

It is worth noting that our simulation results demonstrate that the proposed model leads to a

structurally balanced influence topology even if it starts with an unbalanced topology.

It should be noted that if for all the initial opinions we have |xi(0)| < 1
2εp for i = 1, . . . , n,

then the individuals will reach a consensus. This is due to the fact that this case would produce

a complete graph with all positive edges. It is also worth mentioning that if |xi(0)| < 1
2εh for

i = 1, . . . , n, we will have Ih(i, x(t)) = ∅, and the model (6) would reduce to the original BCM

(2). On the other hand, if initial opinions are such that Ih(i, x(0)) 6= ∅, our simulation results

for model (6) suggest that the opinion dynamics could lead to consensus, bipartite consensus, or

clustering. That is, all individuals might agree on a certain opinion (consensus), agree on two

opposite opinions (bipartite consensus), or form disjoint clusters. Note that when individuals
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form disjoint clusters, it is possible for each cluster to reach a consensus or a bipartite consensus.

We also showed via simulations that the number of clusters increase for small values of εp

and large values of εh. This shows that if the individuals in the network do not trust each

others’ opinions, then they form disjoint clusters. According to our simulation results, as εh

increases the distance among the opinions also increases. This shows that as the latitude of

non-commitment grows, the opinions are driven farther from each other.

It was shown in other simulations that clustering can happen in this model. As mentioned

earlier, in our setup, clusters are disjoint, and they do not influence each other. However, all

clusters seek structural balance. To capture this phenomenon, we showed via simulations that

the clusters reach a structurally balanced network. In this situation, individuals in each cluster

agree on a common value and consensus occurs inside each cluster. It is also possible for only

one of the clusters in the graph to form bipartite consensus. In other words, only one pair of

exactly opposite opinions may exist in the social society, even though some other opinions may

also exist in between when clustering appears.

One should note that the focus of bounded confidence models (our model included) is on how

far opinions are from each other, rather than positivity or negativity of the opinions themselves.

However, we would like to point out that, in our proposed model, the opinions of individuals

can adopt negative values as xi ∈ R. In fact, the opinion of an individual is given a meaningful

numeric value to facilitate mathematical modeling of opinion dynamics. For instance, individuals

can be asked to rate movies or products using a number between 0 to 10. As for the negative

values of the opinions, individuals can fill out questionnaires with values ranging from −10 to 10

to show to what extent they agree or disagree with a certain topic. In addition, with the growth

of online social network website, individuals have a chance to like or dislike posts by others.

Tools such as sentiment analysis can also be used to associate numerical values to the opinions.

For instance, in [63], the authors “use a dictionary-based polarity scoring method to assign

positivity and negativity scores to YouTube profiles and comments”. Hence, it is reasonable to

consider negative values for opinions as they can occur in real social networks in the forms of

distrust, dislike or disagreement.

One might argue that in our proposed model, distant positive opinions can lead to opposite

opinions. In other words, two distant positive opinions will be rejected as they fall in the

latitude of rejection, and a negative influence weight is associated with the individuals. Negative
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influences (not opinions) among the individuals can be a consequence of reactance or “boomerang

effects”. That is, an individual may not only resist the opinions of others, but even adopt an

opinion that is opposite to the opinions of others [64]. Then, the individuals will reach an

equilibrium of x∗i = −x∗j . This might seem absurd at first as both individuals have positive

opinions towards an issue, but we believe it is possible for this to happen in real life situations.

For instance, consider the 2020 Taiwan general presidential election. The poll support for Han

Kuo-yu, the candidate for the Kuomintang Party (KMT), was 48.7% (vs 32.3% of the opponent

DPP party) on 20 December 2018. The support reduced to 34.7% (vs 52.1%) on 24 August

2019. A general opinion is that his hardcore fans’ (the so-called “Han Fans”) intemperate

support repulsed the gentle supporters to his opponent.

The reason for this behavior may be traced back to “contrast effects”. There is extensive

social psychological evidence about the existence of contrast effects in attitudinal research. Con-

trast effects occur exactly when two opinions of similar valence (or descriptive relevance to an

attitude object) end up leading to conclusions that increase the distance between two original

opinions because one of the two is used as standard of comparison for the other one. These

effects are typically expected to be due to divergent framing. That is, the two opinions are

treated as belonging to mutually incompatible families of opinions even if (objectively) very

similar, see e.g. [65, 66]. To conclude, we believe that negative opinions can be observed in

social networks; moreover, it is possible for distant positive opinions towards an issue to cause

repulsive influences.

6. Conclusion

In this paper, we proposed a framework for establishing a connection between social judgment

and balance theories in social psychology with the help of nonlinear models. In particular,

we modified the original BCM to consider negative interactions in a social network. This is

because proper introduction of negative interaction to BCM aligns it with social judgment theory.

Computer simulations were conducted to describe the behavior of the proposed model. It was

shown that the proposed model could result in consensus, bipartite consensus, or clustering.

More importantly, it was also shown in the simulations that using the proposed model, the

influence graph among individuals leads to a structurally balanced one even if it starts with an

unbalanced influence graph.

22



References

[1] A. V. Proskurnikov, R. Tempo, A tutorial on modeling and analysis of dynamic social

networks. part I, Annual Reviews in Control 43 (2017) 65 – 79. doi:https://doi.org/

10.1016/j.arcontrol.2017.03.002.

[2] J. L. Moreno, Who shall survive?: A new approach to the problem of human interrelations.,

Nervous and Mental Disease Publishing Co, 1934. doi:http://dx.doi.org/10.1037/

10648-000.

[3] L. Freeman, The development of social network analysis, A Study in the Sociology of

Science, Vol. 1, Empirical Press, 2004.

[4] A. Palmer, N. Koenig-Lewis, An experiential, social network-based approach to direct mar-

keting, Direct Marketing: An International Journal 3 (3) (2009) 162–176.

[5] J. Liu, N. Hassanpour, S. Tatikonda, A. S. Morse, Dynamic threshold models of collec-

tive action in social networks, in: Decision and Control (CDC), 2012 IEEE 51st Annual

Conference on, IEEE, 2012, pp. 3991–3996.

[6] V. Van Vlasselaer, L. Akoglu, T. Eliassi-Rad, M. Snoeck, B. Baesens, Finding cliques in

large fraudulent networks: theory and insights, in: Conference of the International Federa-

tion of Operational Research Societies (IFORS 2014), 2014.

[7] B. Baesens, V. Van Vlasselaer, W. Verbeke, Fraud analytics using descriptive, predictive,

and social network techniques: a guide to data science for fraud detection, John Wiley &

Sons, 2015.

[8] V. Van Vlasselaer, T. Eliassi-Rad, L. Akoglu, M. Snoeck, B. Baesens, Gotcha! network-

based fraud detection for social security fraud, Management Science 63 (9) (2016) 3090–

3110.

[9] L. M. Bogart, G. J. Wagner, H. D. Green Jr, M. G. Mutchler, D. J. Klein, B. McDavitt, S. J.

Lawrence, C. L. Hilliard, Medical mistrust among social network members may contribute

to antiretroviral treatment nonadherence in african americans living with hiv, Social Science

& Medicine 164 (2016) 133–140.

23

https://doi.org/https://doi.org/10.1016/j.arcontrol.2017.03.002
https://doi.org/https://doi.org/10.1016/j.arcontrol.2017.03.002
https://doi.org/http://dx.doi.org/10.1037/10648-000
https://doi.org/http://dx.doi.org/10.1037/10648-000


[10] M. Charles, Extraordinary popular delusions and the madness of crowds, Radford, VA:

Wilder (1841).

[11] G. L. Bon, The crowd: A study of the popular mind, Classic Books Library, 1896.

[12] M. Sherif, The psychology of social norms., Harper, 1936.

[13] S. E. Asch, Studies of independence and conformity: I. a minority of one against a unani-

mous majority., Psychological monographs: General and applied 70 (9) (1956) 1.

[14] S. Moscovici, E. Lage, M. Naffrechoux, Influence of a consistent minority on the responses

of a majority in a color perception task, Sociometry (1969) 365–380.

[15] J. M. Keynes, The general theory of employment, The quarterly journal of economics 51 (2)

(1937) 209–223.

[16] P. F. Lazarsfeld, B. Berelson, H. Gaudet, The people’s choice: How the voter makes up his

mind in a presidential election, New York: Duell, Sloan and Pearce (1944).

[17] E. Katz, F. Paul, Lazarsfeld. 1955. personal influence: The part played by people in the

flow of mass communications, Glencoe, Illinois: The Free Press. KatzPersonal Influence:

The Part Played by People in the Flow of Mass Communication (1955).

[18] J. French, B. Raven, D. Cartwright, The bases of social power, Classics of organization

theory 7 (1959) 311–320.
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